常用数学符号表示 郝伟 2021/0/0 [TOC]

1. 简介

2. 1 数值与数组 Numbers & Arrays

ID Notion Description 解释
1.1 $a$ A scalar (integer or ral) 标量
1.2 $\text{A}$ A scalar constant 标量常数
1.3 $\boldsymbol{a}$ A vector 矢量
1.4 $\boldsymbol{A}$ A matrix 矩阵
1.5 $\texttt{A}$ A tensor 张量
1.6 $\boldsymbol{I}_n$ The $n\times n$ identity matrix n阶单位矩阵
1.7 $\boldsymbol{D}$ A diagnonal matrix 对角矩阵
1.8 $\text{diag}(\boldsymbol{a})$ A square, diagonal matrix with diagonal entries given by $\boldsymbol{a}$ 由矢量 $\boldsymbol{a}$ 给出的具有对角元素的方形对角矩阵
1.9 $\text{a}$ A scalar random varaiable 随机标量变量
1.10 $\textbf{a}$ A vector-valued random varaiable 随机矢量变量
1.11 $\textbf{A}$ A matrix-valued random variable 随机矩阵变量

3. Math Fonts

Ref: Math Font Selection in LaTeX and Unicode, http://milde.users.sourceforge.net/LUCR/Math/math-font-selection.xhtml Mathematical fonts, https://www.overleaf.com/learn/latex/Mathematical_fonts

1. \mathnormal  default1
2. \mathrm      roman2
3. \mathbf      bold roman
4. \mathsf      sans serif
5. \mathit      text italic
6. \mathtt      typewriter
7. \mathcal     calligraphic
8. \mathscr     艺术体
9. \mathbb      集合体
  1. \mathnormal is used by default for alphanumeric characters in math mode. It sets the letter shape according to character class and math style. (Table 1 shows the default letter shapes for common math styles).

2.The specifier “roman” is ambiguous: roman shape stands for upright, while roman type stands for serif (as opposed to sans serif).

3.1. Naming scheme

The naming scheme is an extension of the predefined math alphabet commands with the established short-cuts:

bf    bold
it    italic
cal   script (calligraphic)
frak  fraktur
bb    double-struck (blackboard bold)
sf    sans serif

3.2. Samples

ID 1.mathnormal 2.mathrm 3.mathbf 4.mathsf 5.mathit 6.mathtt 7.mathcal 8.mathscr 9.mathbb
1 $\mathnormal{A}$ $\mathrm{A}$ $\mathbf{A}$ $\mathsf{A}$ $\mathit{A}$ $\mathtt{A}$ $\mathcal{A}$ $\mathscr{A}$ $\mathbb{A}$
2 $\mathnormal{B}$ $\mathrm{B}$ $\mathbf{B}$ $\mathsf{B}$ $\mathit{B}$ $\mathtt{B}$ $\mathcal{B}$ $\mathscr{B}$ $\mathbb{B}$
3 $\mathnormal{C}$ $\mathrm{C}$ $\mathbf{C}$ $\mathsf{C}$ $\mathit{C}$ $\mathtt{C}$ $\mathcal{C}$ $\mathscr{C}$ $\mathbb{C}$
4 $\mathnormal{D}$ $\mathrm{D}$ $\mathbf{D}$ $\mathsf{D}$ $\mathit{D}$ $\mathtt{D}$ $\mathcal{D}$ $\mathscr{D}$ $\mathbb{D}$
5 $\mathnormal{E}$ $\mathrm{E}$ $\mathbf{E}$ $\mathsf{E}$ $\mathit{E}$ $\mathtt{E}$ $\mathcal{E}$ $\mathscr{E}$ $\mathbb{E}$
6 $\mathnormal{F}$ $\mathrm{F}$ $\mathbf{F}$ $\mathsf{F}$ $\mathit{F}$ $\mathtt{F}$ $\mathcal{F}$ $\mathscr{F}$ $\mathbb{F}$
7 $\mathnormal{G}$ $\mathrm{G}$ $\mathbf{G}$ $\mathsf{G}$ $\mathit{G}$ $\mathtt{G}$ $\mathcal{G}$ $\mathscr{G}$ $\mathbb{G}$
8 $\mathnormal{H}$ $\mathrm{H}$ $\mathbf{H}$ $\mathsf{H}$ $\mathit{H}$ $\mathtt{H}$ $\mathcal{H}$ $\mathscr{H}$ $\mathbb{H}$
9 $\mathnormal{I}$ $\mathrm{I}$ $\mathbf{I}$ $\mathsf{I}$ $\mathit{I}$ $\mathtt{I}$ $\mathcal{I}$ $\mathscr{I}$ $\mathbb{I}$
10 $\mathnormal{J}$ $\mathrm{J}$ $\mathbf{J}$ $\mathsf{J}$ $\mathit{J}$ $\mathtt{J}$ $\mathcal{J}$ $\mathscr{J}$ $\mathbb{J}$
11 $\mathnormal{K}$ $\mathrm{K}$ $\mathbf{K}$ $\mathsf{K}$ $\mathit{K}$ $\mathtt{K}$ $\mathcal{K}$ $\mathscr{K}$ $\mathbb{K}$
12 $\mathnormal{L}$ $\mathrm{L}$ $\mathbf{L}$ $\mathsf{L}$ $\mathit{L}$ $\mathtt{L}$ $\mathcal{L}$ $\mathscr{L}$ $\mathbb{L}$
13 $\mathnormal{M}$ $\mathrm{M}$ $\mathbf{M}$ $\mathsf{M}$ $\mathit{M}$ $\mathtt{M}$ $\mathcal{M}$ $\mathscr{M}$ $\mathbb{M}$
14 $\mathnormal{N}$ $\mathrm{N}$ $\mathbf{N}$ $\mathsf{N}$ $\mathit{N}$ $\mathtt{N}$ $\mathcal{N}$ $\mathscr{N}$ $\mathbb{N}$
15 $\mathnormal{O}$ $\mathrm{O}$ $\mathbf{O}$ $\mathsf{O}$ $\mathit{O}$ $\mathtt{O}$ $\mathcal{O}$ $\mathscr{O}$ $\mathbb{O}$
16 $\mathnormal{P}$ $\mathrm{P}$ $\mathbf{P}$ $\mathsf{P}$ $\mathit{P}$ $\mathtt{P}$ $\mathcal{P}$ $\mathscr{P}$ $\mathbb{P}$
17 $\mathnormal{Q}$ $\mathrm{Q}$ $\mathbf{Q}$ $\mathsf{Q}$ $\mathit{Q}$ $\mathtt{Q}$ $\mathcal{Q}$ $\mathscr{Q}$ $\mathbb{Q}$
18 $\mathnormal{R}$ $\mathrm{R}$ $\mathbf{R}$ $\mathsf{R}$ $\mathit{R}$ $\mathtt{R}$ $\mathcal{R}$ $\mathscr{R}$ $\mathbb{R}$
19 $\mathnormal{S}$ $\mathrm{S}$ $\mathbf{S}$ $\mathsf{S}$ $\mathit{S}$ $\mathtt{S}$ $\mathcal{S}$ $\mathscr{S}$ $\mathbb{S}$
20 $\mathnormal{T}$ $\mathrm{T}$ $\mathbf{T}$ $\mathsf{T}$ $\mathit{T}$ $\mathtt{T}$ $\mathcal{T}$ $\mathscr{T}$ $\mathbb{T}$
21 $\mathnormal{U}$ $\mathrm{U}$ $\mathbf{U}$ $\mathsf{U}$ $\mathit{U}$ $\mathtt{U}$ $\mathcal{U}$ $\mathscr{U}$ $\mathbb{U}$
22 $\mathnormal{V}$ $\mathrm{V}$ $\mathbf{V}$ $\mathsf{V}$ $\mathit{V}$ $\mathtt{V}$ $\mathcal{V}$ $\mathscr{V}$ $\mathbb{V}$
23 $\mathnormal{W}$ $\mathrm{W}$ $\mathbf{W}$ $\mathsf{W}$ $\mathit{W}$ $\mathtt{W}$ $\mathcal{W}$ $\mathscr{W}$ $\mathbb{W}$
24 $\mathnormal{X}$ $\mathrm{X}$ $\mathbf{X}$ $\mathsf{X}$ $\mathit{X}$ $\mathtt{X}$ $\mathcal{X}$ $\mathscr{X}$ $\mathbb{X}$
25 $\mathnormal{Y}$ $\mathrm{Y}$ $\mathbf{Y}$ $\mathsf{Y}$ $\mathit{Y}$ $\mathtt{Y}$ $\mathcal{Y}$ $\mathscr{Y}$ $\mathbb{Y}$
26 $\mathnormal{Z}$ $\mathrm{Z}$ $\mathbf{Z}$ $\mathsf{Z}$ $\mathit{Z}$ $\mathtt{Z}$ $\mathcal{Z}$ $\mathscr{Z}$ $\mathbb{Z}$
ID 1.mathnormal 2.mathrm 3.mathbf 4.mathsf 5.mathit 6.mathtt 7.mathcal 8.mathscr 9.mathbb
1 $\mathnormal{a}$ $\mathrm{a}$ $\mathbf{a}$ $\mathsf{a}$ $\mathit{a}$ $\mathtt{a}$ $\mathcal{a}$ $\mathscr{a}$ $\mathbb{a}$
2 $\mathnormal{b}$ $\mathrm{b}$ $\mathbf{b}$ $\mathsf{b}$ $\mathit{b}$ $\mathtt{b}$ $\mathcal{b}$ $\mathscr{b}$ $\mathbb{b}$
3 $\mathnormal{c}$ $\mathrm{c}$ $\mathbf{c}$ $\mathsf{c}$ $\mathit{c}$ $\mathtt{c}$ $\mathcal{c}$ $\mathscr{c}$ $\mathbb{c}$
4 $\mathnormal{d}$ $\mathrm{d}$ $\mathbf{d}$ $\mathsf{d}$ $\mathit{d}$ $\mathtt{d}$ $\mathcal{d}$ $\mathscr{d}$ $\mathbb{d}$
5 $\mathnormal{e}$ $\mathrm{e}$ $\mathbf{e}$ $\mathsf{e}$ $\mathit{e}$ $\mathtt{e}$ $\mathcal{e}$ $\mathscr{e}$ $\mathbb{e}$
6 $\mathnormal{f}$ $\mathrm{f}$ $\mathbf{f}$ $\mathsf{f}$ $\mathit{f}$ $\mathtt{f}$ $\mathcal{f}$ $\mathscr{f}$ $\mathbb{f}$
7 $\mathnormal{g}$ $\mathrm{g}$ $\mathbf{g}$ $\mathsf{g}$ $\mathit{g}$ $\mathtt{g}$ $\mathcal{g}$ $\mathscr{g}$ $\mathbb{g}$
8 $\mathnormal{h}$ $\mathrm{h}$ $\mathbf{h}$ $\mathsf{h}$ $\mathit{h}$ $\mathtt{h}$ $\mathcal{h}$ $\mathscr{h}$ $\mathbb{h}$
9 $\mathnormal{i}$ $\mathrm{i}$ $\mathbf{i}$ $\mathsf{i}$ $\mathit{i}$ $\mathtt{i}$ $\mathcal{i}$ $\mathscr{i}$ $\mathbb{i}$
10 $\mathnormal{j}$ $\mathrm{j}$ $\mathbf{j}$ $\mathsf{j}$ $\mathit{j}$ $\mathtt{j}$ $\mathcal{j}$ $\mathscr{j}$ $\mathbb{j}$
11 $\mathnormal{k}$ $\mathrm{k}$ $\mathbf{k}$ $\mathsf{k}$ $\mathit{k}$ $\mathtt{k}$ $\mathcal{k}$ $\mathscr{k}$ $\mathbb{k}$
12 $\mathnormal{l}$ $\mathrm{l}$ $\mathbf{l}$ $\mathsf{l}$ $\mathit{l}$ $\mathtt{l}$ $\mathcal{l}$ $\mathscr{l}$ $\mathbb{l}$
13 $\mathnormal{m}$ $\mathrm{m}$ $\mathbf{m}$ $\mathsf{m}$ $\mathit{m}$ $\mathtt{m}$ $\mathcal{m}$ $\mathscr{m}$ $\mathbb{m}$
14 $\mathnormal{n}$ $\mathrm{n}$ $\mathbf{n}$ $\mathsf{n}$ $\mathit{n}$ $\mathtt{n}$ $\mathcal{n}$ $\mathscr{n}$ $\mathbb{n}$
15 $\mathnormal{o}$ $\mathrm{o}$ $\mathbf{o}$ $\mathsf{o}$ $\mathit{o}$ $\mathtt{o}$ $\mathcal{o}$ $\mathscr{o}$ $\mathbb{o}$
16 $\mathnormal{p}$ $\mathrm{p}$ $\mathbf{p}$ $\mathsf{p}$ $\mathit{p}$ $\mathtt{p}$ $\mathcal{p}$ $\mathscr{p}$ $\mathbb{p}$
17 $\mathnormal{q}$ $\mathrm{q}$ $\mathbf{q}$ $\mathsf{q}$ $\mathit{q}$ $\mathtt{q}$ $\mathcal{q}$ $\mathscr{q}$ $\mathbb{q}$
18 $\mathnormal{r}$ $\mathrm{r}$ $\mathbf{r}$ $\mathsf{r}$ $\mathit{r}$ $\mathtt{r}$ $\mathcal{r}$ $\mathscr{r}$ $\mathbb{r}$
19 $\mathnormal{s}$ $\mathrm{s}$ $\mathbf{s}$ $\mathsf{s}$ $\mathit{s}$ $\mathtt{s}$ $\mathcal{s}$ $\mathscr{s}$ $\mathbb{s}$
20 $\mathnormal{t}$ $\mathrm{t}$ $\mathbf{t}$ $\mathsf{t}$ $\mathit{t}$ $\mathtt{t}$ $\mathcal{t}$ $\mathscr{t}$ $\mathbb{t}$
21 $\mathnormal{u}$ $\mathrm{u}$ $\mathbf{u}$ $\mathsf{u}$ $\mathit{u}$ $\mathtt{u}$ $\mathcal{u}$ $\mathscr{u}$ $\mathbb{u}$
22 $\mathnormal{v}$ $\mathrm{v}$ $\mathbf{v}$ $\mathsf{v}$ $\mathit{v}$ $\mathtt{v}$ $\mathcal{v}$ $\mathscr{v}$ $\mathbb{v}$
23 $\mathnormal{w}$ $\mathrm{w}$ $\mathbf{w}$ $\mathsf{w}$ $\mathit{w}$ $\mathtt{w}$ $\mathcal{w}$ $\mathscr{w}$ $\mathbb{w}$
24 $\mathnormal{x}$ $\mathrm{x}$ $\mathbf{x}$ $\mathsf{x}$ $\mathit{x}$ $\mathtt{x}$ $\mathcal{x}$ $\mathscr{x}$ $\mathbb{x}$
25 $\mathnormal{y}$ $\mathrm{y}$ $\mathbf{y}$ $\mathsf{y}$ $\mathit{y}$ $\mathtt{y}$ $\mathcal{y}$ $\mathscr{y}$ $\mathbb{y}$
26 $\mathnormal{z}$ $\mathrm{z}$ $\mathbf{z}$ $\mathsf{z}$ $\mathit{z}$ $\mathtt{z}$ $\mathcal{z}$ $\mathscr{z}$ $\mathbb{z}$

3.3. a的四种写法

# four ways to set the letter a in a bold sans-serif font:
% Text                 Math:
\textbf{\textsf{a}}    $\bm{\mathsf{a}}$
\bfseries \textsf{a}   \mathversion{bold} $\mathsf{a}$

4. 9 Matrix

\begin{bmatrix}
a&b\\
c&d
\end{bmatrix}

5. 10 Table

\begin{array}{c|c}
\text{Year} & \text{Sand Area}(\text{km}^2) \\
\hline
2000 & 90.0\\
2010 & 100.0\\
\end{array}\\

6. 示例

6.1. Ex.1

Let $\mathcal{T}$ be a topological space, a basis is defined as

7. 2

8. 3

results matching ""

    No results matching ""